$$ \def\argmax{\operatorname*{argmax}} \def\argmin{\operatorname*{argmin}} \def\as{\textrm{a.s.}} \def\Ber{\text{Ber}} \def\Betad#1{\text{Beta}\left(#1\right)} \def\Binom{\text{Binom}} \def\Geom{\text{Geom}} \def\Unif{\text{Unif}} \def\E#1{\mathbb{E}\left[#1\right]} \def\iid{\stackrel{iid}{\sim}} \def\is{\coloneqq} \def\Gauk#1#2{\mathcal{N}_{#1}\left(#2\right)} \def\Gaus#1{\Gauk{}{#1}} \def\indicator#1{\mathbb{1}\{#1\}} \def\tp{\intercal} \def\p{\vec{p}} \def\P{\mathbb{P}} \def\Poiss{\text{Poiss}} \def\R{\mathbb{R}} \def\X{\vec{X}} \def\Y{\vec{Y}} \def\XX{\mathbb{X}} \def\V#1{\mathbb{V}\left(#1\right)} \def\Cov#1{\V{#1}} \def\N{\mathbb{Z}_+} \def\TV{\textrm{TV}} \def\KL{\textrm{KL}} \def\vec#1{\boldsymbol{#1}} \def\toapd{\xrightarrow[n\to\infty]{\as/\P/(d)}} \def\toprob{\xrightarrow[n\to\infty]{\P}} \def\tosure{\xrightarrow[n\to\infty]{\as}} \def\todist{\xrightarrow[n\to\infty]{(d)}} $$

Tham khảo

Giáo trình

Philippe Rigollet, Tyler Maunu, Jan Christian Huetter. 2022. “Fundamentals of Statistics.” MITx. https://www.edx.org/course/fundamentals-of-statistics.
Pishro-Nik, H. 2014. Introduction to Probability, Statistics, and Random Processes. Kappa Research LLC. https://www.probabilitycourse.com.
“STAT 415 Introduction to Mathematical Statistics.” 2022. Penn State’s World Campus. https://online.stat.psu.edu/stat415.
Wasserman, Larry. 2004. All of Statistics : A Concise Course in Statistical Inference. New York: Springer. https://archive.org/details/springer_10.1007-978-0-387-21736-9.

MITx 18.6501x

“Fundamentals of Statistics” (MITx 18.6501x ) là khóa học của Philippe Rigollet (2022) đại học MIT dạy trên edX.

Quy định

Kỳ hạn

Thời gian cần thiết

Mỗi tuần hơn \(12\) tiếng

  • 5-7 hours on exercises, including 3 hours of lecture clips
  • 1-2 hours watching recitations
  • 5-7 hours for weekly problem sets

Tính điểm

Điểm thi đậu chứng chỉ là 60% tổng số điểm tối đa.